The global Goursat problem on R × S1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Solutions of a Periodic Goursat Problem

Under reasonable assumptions on the data u, v and the function f , we show that the nonlinear periodic Goursat problem ∂u ∂x∂y (x, y) = f(x, y, u(x, y)); u(x, 0) = v(x); u(0, y) = w(y) which cannot be posed in the general theory of distributions, may be studied and solved in a differential algebra of periodic new generalized functions on R2. This algebra contains, in a canonical way, the space ...

متن کامل

Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...

متن کامل

on the goursat problem for a linear partial differential equation

in this paper, the goursat problem of a general form for a linear partial differential equation is investigated with the help of the riemann function method. some results are given concerning the existence and uniqueness for the solution of the suggested problem.

متن کامل

The Bang-bang Principle for the Goursat-darboux Problem*

In the paper, the bang-bang principle for a control system connected with a system of linear nonautonomous partial differential equations of hyperbolic type (the socalled Goursat-Darboux problem or continuous Fornasini-Marchesini problem) is proved. Some density result is also obtained.

متن کامل

The upper Lyapunov exponent of S1(2,R) cocycles: Discontinuity and the problem of positivity

Let T be an aperiodic automorphism of a standard probability space (X,m). Let V be the subset of A = L°°(X% 5/(2, R)) where the upper Lyapunov exponent is positive almost everywhere. We prove that the set V \ int(V) is not empty. So, there are always points in A where the Lyapunov exponents are discontinuous. We show further that the decision whether a given cocycle is in V is at least as hard ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1989

ISSN: 0022-1236

DOI: 10.1016/0022-1236(89)90025-6